Fioust

M.Math.IInd year Semestral Exam 2012 Number Theory Instructor — B.Sury

- **Q 1.** Show that if n divides $2^n 1$, then n = 1. Hint: Look at a suitable prime dividing n if n > 1.
- **Q 2.** Let g be a multiplicative function and $f(n) = \sum_{d|n} g(d)$. Consider the $n \times n$ matrix A where $a_{ij} = f(GCD(i,j))$. Show that det $A = g(1)g(2) \cdots g(n)$.

Hint: Look at the matrix B with $b_{ij} = \sqrt{g(j)}$ when j|i and $b_{ij} = 0$ if not. Relate A to B.

Q 3. Let m be a product of primes of the form 4t+1 and let n be an arbitrary integer. Prove that $y^2 = x^3 + (4n-1)^3 - 4m^2$ has no integral solutions.

Hint: Observe that any solution (x,y) satisfies $x \equiv 1 \mod 4$; then rewrite the equality as $y^2 + 4m^2 = x^3 + (4n-1)^3$ and show that the right side must have a prime factor $\equiv 3 \mod 4$ and derive a contradiction using quadratic reciprocity.

- **Q 4.** Prove that the quadratic form $7x^2 + 25xy + 23y^2$ takes the same values as the quadratic form $x^2 + xy + 5y^2$ over integers.
- **Q 5.** Find all primes p such that $x^2 \equiv 13 \mod p$ has a solution.
- **Q** 6. Let f be a positive-definite integral, binary quadratic form. Then, show that there are only a finite number of representations of an integer n by f.
- **Q** 7. Prove that the sum of the primitive roots mod p is $\mu(p-1)$ mod p.
- **Q 8.** Prove that $x^2 + y^2 + z^2 = 2xyz$ has no integer solutions $x, y, z \neq 0$.
- **Q 9.** Prove that $\theta(x) = \psi(x) + O(\sqrt{x})$ where $\theta(x) := \sum_{p \le x} \log(p)$ and $\psi(x) := \sum_{n \le x} \Lambda(n)$ with $\Lambda(n)$ the Mangoldt function.